p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.60D4, C23.10D8, C23.15SD16, C4⋊D4⋊8C4, (C22×D4)⋊5C4, C22.12(C2×D8), C4.13(C23⋊C4), C22⋊C8⋊50C22, C22.SD16⋊3C2, (C22×C4).220D4, C23.509(C2×D4), C23.7Q8⋊2C2, C22.30(C2×SD16), C4⋊D4.142C22, C2.C42⋊2C22, (C22×C4).641C23, (C23×C4).213C22, C22.25(D4⋊C4), C23.175(C22⋊C4), C2.24(C42⋊C22), (C2×C4⋊C4)⋊11C4, C4⋊C4.19(C2×C4), (C2×C22⋊C8)⋊8C2, (C2×D4).15(C2×C4), (C2×C4⋊D4).5C2, C2.22(C2×C23⋊C4), C2.10(C2×D4⋊C4), (C2×C4).1165(C2×D4), (C2×C4).131(C22×C4), (C22×C4).204(C2×C4), (C2×C4).241(C22⋊C4), C22.195(C2×C22⋊C4), SmallGroup(128,251)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.60D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=b, ab=ba, ac=ca, ad=da, ae=ea, faf-1=acd, bc=cb, bd=db, ebe-1=bcd, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=bde3 >
Subgroups: 452 in 170 conjugacy classes, 54 normal (28 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C2.C42, C22⋊C8, C22⋊C8, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4⋊D4, C4⋊D4, C22×C8, C23×C4, C22×D4, C22×D4, C22.SD16, C23.7Q8, C2×C22⋊C8, C2×C4⋊D4, C24.60D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, D8, SD16, C22×C4, C2×D4, C23⋊C4, D4⋊C4, C2×C22⋊C4, C2×D8, C2×SD16, C2×C23⋊C4, C2×D4⋊C4, C42⋊C22, C24.60D4
(1 30)(2 31)(3 32)(4 25)(5 26)(6 27)(7 28)(8 29)(9 21)(10 22)(11 23)(12 24)(13 17)(14 18)(15 19)(16 20)
(1 26)(2 16)(3 28)(4 10)(5 30)(6 12)(7 32)(8 14)(9 17)(11 19)(13 21)(15 23)(18 29)(20 31)(22 25)(24 27)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 32)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 14 26 8)(2 21 16 13)(3 31 28 20)(4 5 10 30)(6 17 12 9)(7 27 32 24)(11 18 19 29)(15 22 23 25)
G:=sub<Sym(32)| (1,30)(2,31)(3,32)(4,25)(5,26)(6,27)(7,28)(8,29)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20), (1,26)(2,16)(3,28)(4,10)(5,30)(6,12)(7,32)(8,14)(9,17)(11,19)(13,21)(15,23)(18,29)(20,31)(22,25)(24,27), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,26,8)(2,21,16,13)(3,31,28,20)(4,5,10,30)(6,17,12,9)(7,27,32,24)(11,18,19,29)(15,22,23,25)>;
G:=Group( (1,30)(2,31)(3,32)(4,25)(5,26)(6,27)(7,28)(8,29)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20), (1,26)(2,16)(3,28)(4,10)(5,30)(6,12)(7,32)(8,14)(9,17)(11,19)(13,21)(15,23)(18,29)(20,31)(22,25)(24,27), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,14,26,8)(2,21,16,13)(3,31,28,20)(4,5,10,30)(6,17,12,9)(7,27,32,24)(11,18,19,29)(15,22,23,25) );
G=PermutationGroup([[(1,30),(2,31),(3,32),(4,25),(5,26),(6,27),(7,28),(8,29),(9,21),(10,22),(11,23),(12,24),(13,17),(14,18),(15,19),(16,20)], [(1,26),(2,16),(3,28),(4,10),(5,30),(6,12),(7,32),(8,14),(9,17),(11,19),(13,21),(15,23),(18,29),(20,31),(22,25),(24,27)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,32),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,14,26,8),(2,21,16,13),(3,31,28,20),(4,5,10,30),(6,17,12,9),(7,27,32,24),(11,18,19,29),(15,22,23,25)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4L | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | D4 | D8 | SD16 | C23⋊C4 | C42⋊C22 |
kernel | C24.60D4 | C22.SD16 | C23.7Q8 | C2×C22⋊C8 | C2×C4⋊D4 | C2×C4⋊C4 | C4⋊D4 | C22×D4 | C22×C4 | C24 | C23 | C23 | C4 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 2 | 4 | 2 | 3 | 1 | 4 | 4 | 2 | 2 |
Matrix representation of C24.60D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 15 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 4 | 0 | 16 |
0 | 0 | 13 | 13 | 16 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 15 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 1 |
0 | 0 | 0 | 13 | 1 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
3 | 14 | 0 | 0 | 0 | 0 |
3 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 15 | 0 |
0 | 0 | 4 | 0 | 1 | 16 |
0 | 0 | 16 | 16 | 4 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
3 | 14 | 0 | 0 | 0 | 0 |
14 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 4 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,4,13,0,0,15,1,4,13,0,0,0,0,0,16,0,0,0,0,16,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,15,1,4,13,0,0,0,0,0,1,0,0,0,0,1,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,3,0,0,0,0,14,3,0,0,0,0,0,0,13,4,16,0,0,0,0,0,16,0,0,0,15,1,4,13,0,0,0,16,0,0],[3,14,0,0,0,0,14,14,0,0,0,0,0,0,13,0,0,0,0,0,0,0,1,0,0,0,15,1,4,13,0,0,0,1,0,0] >;
C24.60D4 in GAP, Magma, Sage, TeX
C_2^4._{60}D_4
% in TeX
G:=Group("C2^4.60D4");
// GroupNames label
G:=SmallGroup(128,251);
// by ID
G=gap.SmallGroup(128,251);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,1430,387,352,1123,1018,248,1971]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f^-1=a*c*d,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*d*e^3>;
// generators/relations